Integration with Aliyun DLF Rest Catalog
Aliyun Data Lake Formation (DLF) serves as a core component of cloud-native data lake architecture, helping users quickly build cloud-native data lake architectures. Data Lake Formation provides unified metadata management on the lake, enterprise-level permission control, and seamlessly integrates with multiple computing engines to break data silos and uncover business value.
-
Unified Metadata and Storage
Computing engines share a unified set of lake metadata and storage, enabling data flow between lake ecosystem products.
-
Unified Permission Management
Computing engines share a unified set of lake table permission configurations, achieving one-time configuration with multi-location effectiveness.
-
Storage Optimization
Provides optimization strategies including small file merging, expired snapshot cleanup, partition organization, and obsolete file cleanup to improve storage efficiency.
-
Comprehensive Cloud Ecosystem Support
Deep integration with Alibaba Cloud products, including streaming and batch computing engines, enabling out-of-the-box functionality and enhancing user experience and operational convenience.
Starting from DLF version 2.5, Paimon Rest Catalog is supported. Doris, beginning from version 3.1.0, supports integration with DLF 2.5+ Paimon Rest Catalog, enabling seamless connection to DLF for accessing and analyzing Paimon table data. This document demonstrates how to use Apache Doris to connect to DLF 2.5+ and access Paimon table data.
This feature is supported since Doris 3.1
Usage Guide
01 Enable DLF Service
Please refer to the DLF official documentation to enable the DLF service and create corresponding Catalog, Database, and Table.
02 Access DLF Using EMR Spark SQL
-
Connection
spark-sql --master yarn \
--conf spark.driver.memory=5g \
--conf spark.sql.defaultCatalog=paimon \
--conf spark.sql.catalog.paimon=org.apache.paimon.spark.SparkCatalog \
--conf spark.sql.catalog.paimon.metastore=rest \
--conf spark.sql.extensions=org.apache.paimon.spark.extensions.PaimonSparkSessionExtensions \
--conf spark.sql.catalog.paimon.uri=http://<region>-vpc.dlf.aliyuncs.com \
--conf spark.sql.catalog.paimon.warehouse=<your-catalog-name> \
--conf spark.sql.catalog.paimon.token.provider=dlf \
--conf spark.sql.catalog.paimon.dlf.token-loader=ecsReplace the corresponding
warehouse
anduri
address. -
Write Data
USE <your-catalog-name>;
CREATE TABLE users_samples
(
user_id INT,
age_level STRING,
final_gender_code STRING,
clk BOOLEAN
);
INSERT INTO users_samples VALUES
(1, '25-34', 'M', true),
(2, '18-24', 'F', false);
INSERT INTO users_samples VALUES
(3, '25-34', 'M', true),
(4, '18-24', 'F', false);
INSERT INTO users_samples VALUES
(5, '25-34', 'M', true),
(6, '18-24', 'F', false);If you encounter the following error, please try removing
paimon-jindo-x.y.z.jar
from/opt/apps/PAIMON/paimon-dlf-2.5/lib/spark3
and restart the Spark service before retrying.Ambiguous FileIO classes are:
org.apache.paimon.jindo.JindoLoader
org.apache.paimon.oss.OSSLoader
03 Connect Doris to DLF
-
Create Paimon Catalog
CREATE CATALOG paimon_dlf_test PROPERTIES (
'type' = 'paimon',
'paimon.catalog.type' = 'rest',
'uri' = 'http://<region>-vpc.dlf.aliyuncs.com',
'warehouse' = '<your-catalog-name>',
'paimon.rest.token.provider' = 'dlf',
'paimon.rest.dlf.access-key-id' = '<ak>',
'paimon.rest.dlf.access-key-secret' = '<sk>'
);- Doris will use temporary credentials returned by DLF to access OSS object storage, without requiring additional OSS credential information.
- Only supports accessing DLF within the same VPC, ensure you provide the correct uri address.
-
Query Data
SELECT * FROM users_samples ORDER BY user_id;
+---------+-----------+-------------------+------+
| user_id | age_level | final_gender_code | clk |
+---------+-----------+-------------------+------+
| 1 | 25-34 | M | 1 |
| 2 | 18-24 | F | 0 |
| 3 | 25-34 | M | 1 |
| 4 | 18-24 | F | 0 |
| 5 | 25-34 | M | 1 |
| 6 | 18-24 | F | 0 |
+---------+-----------+-------------------+------+ -
Query System Tables
SELECT snapshot_id, commit_time, total_record_count FROM users_samples$snapshots;
+-------------+-------------------------+--------------------+
| snapshot_id | commit_time | total_record_count |
+-------------+-------------------------+--------------------+
| 1 | 2025-08-09 05:56:02.906 | 2 |
| 2 | 2025-08-13 03:41:32.732 | 4 |
| 3 | 2025-08-13 03:41:35.218 | 6 |
+-------------+-------------------------+--------------------+ -
Batch Incremental Reading
SELECT * FROM users_samples@incr('startSnapshotId'=1, 'endSnapshotId'=2) ORDER BY user_id;
+---------+-----------+-------------------+------+
| user_id | age_level | final_gender_code | clk |
+---------+-----------+-------------------+------+
| 3 | 25-34 | M | 1 |
| 4 | 18-24 | F | 0 |
+---------+-----------+-------------------+------+