Skip to main content

Doris Kafka Connector

Kafka Connect is a scalable and reliable tool for data transmission between Apache Kafka and other systems. Connectors can be defined Move large amounts of data in and out of Kafka.

The Doris community provides the doris-kafka-connector plug-in, which can write data in the Kafka topic to Doris.

Usage Doris Kafka Connector​

Download​

doris-kafka-connector

maven dependencies

<dependency>
<groupId>org.apache.doris</groupId>
<artifactId>doris-kafka-connector</artifactId>
<version>1.0.0</version>
</dependency>

Standalone mode startup​

Create the plugins directory under $KAFKA_HOME and put the downloaded doris-kafka-connector jar package into it
Configure config/connect-standalone.properties

# Modify broker address
bootstrap.servers=127.0.0.1:9092

# Modify to the created plugins directory
# Note: Please fill in the direct path to Kafka here. For example: plugin.path=/opt/kafka/plugins
plugin.path=$KAFKA_HOME/plugins

# It is recommended to increase the max.poll.interval.ms time of Kafka to more than 30 minutes, the default is 5 minutes
# Avoid Stream Load import data consumption timeout and consumers being kicked out of the consumer group
max.poll.interval.ms=1800000
consumer.max.poll.interval.ms=1800000

Configure doris-connector-sink.properties

Create doris-connector-sink.properties in the config directory and configure the following content:

name=test-doris-sink
connector.class=org.apache.doris.kafka.connector.DorisSinkConnector
topics=topic_test
doris.topic2table.map=topic_test:test_kafka_tbl
buffer.count.records=10000
buffer.flush.time=120
buffer.size.bytes=5000000
doris.urls=10.10.10.1
doris.http.port=8030
doris.query.port=9030
doris.user=root
doris.password=
doris.database=test_db
key.converter=org.apache.kafka.connect.storage.StringConverter
value.converter=org.apache.kafka.connect.json.JsonConverter

Start Standalone

$KAFKA_HOME/bin/connect-standalone.sh -daemon $KAFKA_HOME/config/connect-standalone.properties $KAFKA_HOME/config/doris-connector-sink.properties
note

Note: It is generally not recommended to use standalone mode in a production environment.

Distributed mode startup​

Create the plugins directory under $KAFKA_HOME and put the downloaded doris-kafka-connector jar package into it

Configure config/connect-distributed.properties

# Modify broker address
bootstrap.servers=127.0.0.1:9092

# Modify group.id, the same cluster needs to be consistent
group.id=connect-cluster

# Modify to the created plugins directory
# Note: Please fill in the direct path to Kafka here. For example: plugin.path=/opt/kafka/plugins
plugin.path=$KAFKA_HOME/plugins

# It is recommended to increase the max.poll.interval.ms time of Kafka to more than 30 minutes, the default is 5 minutes
# Avoid Stream Load import data consumption timeout and consumers being kicked out of the consumer group
max.poll.interval.ms=1800000
consumer.max.poll.interval.ms=1800000

Start Distributed

$KAFKA_HOME/bin/connect-distributed.sh -daemon $KAFKA_HOME/config/connect-distributed.properties

Add Connector

curl -i http://127.0.0.1:8083/connectors -H "Content-Type: application/json" -X POST -d '{
"name":"test-doris-sink-cluster",
"config":{
"connector.class":"org.apache.doris.kafka.connector.DorisSinkConnector",
"topics":"topic_test",
"doris.topic2table.map": "topic_test:test_kafka_tbl",
"buffer.count.records":"10000",
"buffer.flush.time":"120",
"buffer.size.bytes":"5000000",
"doris.urls":"10.10.10.1",
"doris.user":"root",
"doris.password":"",
"doris.http.port":"8030",
"doris.query.port":"9030",
"doris.database":"test_db",
"key.converter":"org.apache.kafka.connect.storage.StringConverter",
"value.converter":"org.apache.kafka.connect.json.JsonConverter"
}
}'

Operation Connector

# View connector status
curl -i http://127.0.0.1:8083/connectors/test-doris-sink-cluster/status -X GET
# Delete connector
curl -i http://127.0.0.1:8083/connectors/test-doris-sink-cluster -X DELETE
# Pause connector
curl -i http://127.0.0.1:8083/connectors/test-doris-sink-cluster/pause -X PUT
# Restart connector
curl -i http://127.0.0.1:8083/connectors/test-doris-sink-cluster/resume -X PUT
# Restart tasks within the connector
curl -i http://127.0.0.1:8083/connectors/test-doris-sink-cluster/tasks/0/restart -X POST

Refer to: Connect REST Interface

note

Note that when kafka-connect is started for the first time, three topics config.storage.topic offset.storage.topic and status.storage.topic will be created in the kafka cluster to record the shared connector configuration of kafka-connect. Offset data and status updates. How to Use Kafka Connect - Get Started

Access an SSL-certified Kafka cluster​

Accessing an SSL-certified Kafka cluster through kafka-connect requires the user to provide a certificate file (client.truststore.jks) used to authenticate the Kafka Broker public key. You can add the following configuration in the connect-distributed.properties file:

# Connect worker
security.protocol=SSL
ssl.truststore.location=/var/ssl/private/client.truststore.jks
ssl.truststore.password=test1234

# Embedded consumer for sink connectors
consumer.security.protocol=SSL
consumer.ssl.truststore.location=/var/ssl/private/client.truststore.jks
consumer.ssl.truststore.password=test1234

For instructions on configuring a Kafka cluster connected to SSL authentication through kafka-connect, please refer to: Configure Kafka Connect

Dead letter queue​

By default, any errors encountered during or during the conversion will cause the connector to fail. Each connector configuration can also tolerate such errors by skipping them, optionally writing the details of each error and failed operation as well as the records in question (with varying levels of detail) to a dead-letter queue for logging.

errors.tolerance=all
errors.deadletterqueue.topic.name=test_error_topic
errors.deadletterqueue.context.headers.enable=true
errors.deadletterqueue.topic.replication.factor=1

Configuration items​

KeyEnumDefault ValueRequiredDescription
name--YConnect application name, must be unique within the Kafka Connect environment
connector.class--Yorg.apache.doris.kafka.connector.DorisSinkConnector
topics--YList of subscribed topics, separated by commas. like: topic1, topic2
doris.urls--YDoris FE connection address. If there are multiple, separate them with commas. like: 10.20.30.1,10.20.30.2,10.20.30.3
doris.http.port--YDoris HTTP protocol port
doris.query.port--YDoris MySQL protocol port
doris.user--YDoris username
doris.password--YDoris password
doris.database--YThe database to write to. It can be empty when there are multiple libraries. At the same time, the specific library name needs to be configured in topic2table.map.
doris.topic2table.map--NThe corresponding relationship between topic and table table, for example: topic1:tb1,topic2:tb2
The default is empty, indicating that topic and table names correspond one to one.
The format of multiple libraries is topic1:db1.tbl1,topic2:db2.tbl2
buffer.count.records-10000NThe number of records each Kafka partition buffers in memory before flushing to doris. Default 10000 records
buffer.flush.time-120NBuffer refresh interval, in seconds, default 120 seconds
buffer.size.bytes-5000000(5MB)NThe cumulative size of records buffered in memory for each Kafka partition, in bytes, default 5MB
jmx-trueNTo obtain connector internal monitoring indicators through JMX, please refer to: Doris-Connector-JMX
enable.2pc-trueNWhether to enable two-phase commit (TwoPhaseCommit) of Stream Load, the default is true.
enable.delete-falseNWhether to delete records synchronously, default false
label.prefix-${name}NStream load label prefix when importing data. Defaults to the Connector application name.
auto.redirect-trueNWhether to redirect StreamLoad requests. After being turned on, StreamLoad will redirect to the BE where data needs to be written through FE, and the BE information will no longer be displayed.
load.modelstream_load,
copy_into
stream_loadNHow to import data. Supports stream_load to directly import data into Doris; also supports copy_into to import data into object storage, and then load the data into Doris.
sink.properties.*-'sink.properties.format':'json',
'sink.properties.read_json_by_line':'true'
NImport parameters for Stream Load.
For example: define column separator 'sink.properties.column_separator':','
Detailed parameter reference here

Enable Group Commit, for example, enable group commit in sync_mode mode: "sink.properties.group_commit":"sync_mode". Group Commit can be configured with three modes: off_mode, sync_mode, and async_mode. For specific usage, please refer to: Group-Commit

Enable partial column update, for example, enable update of partial columns of specified col2: "sink.properties.partial_columns":"true", "sink.properties.columns": " col2",
delivery.guaranteeat_least_once,
exactly_once
at_least_onceNHow to ensure data consistency when consuming Kafka data is imported into Doris. Supports at_least_once exactly_once, default is at_least_once. Doris needs to be upgraded to 2.1.0 or above to ensure data exactly_once
converter.modenormal,
debezium_ingestion
normalNType conversion mode of upstream data when using Connector to consume Kafka data.
normal means consuming data in Kafka normally without any type conversion.
debezium_ingestion means that when Kafka upstream data is collected through CDC (Changelog Data Capture) tools such as Debezium, the upstream data needs to undergo special type conversion to support it.
debezium.schema.evolutionnone,
basic
noneNUse Debezium to collect upstream database systems (such as MySQL), and when structural changes occur, the added fields can be synchronized to Doris.
none means that when the structure of the upstream database system changes, the changed structure will not be synchronized to Doris.
basic means synchronizing the data change operation of the upstream database. Since changing the column structure is a dangerous operation (it may lead to accidentally deleting columns of the Doris table structure), currently only the operation of adding columns synchronously upstream is supported. When a column is renamed, the old column remains unchanged, and the Connector will add a new column in the target table and sink the renamed new data into the new column.
database.time_zone-UTCNWhen converter.mode is not normal mode, it provides a way to specify time zone conversion for date data types (such as datetime, date, timestamp, etc.). The default is UTC time zone.
avro.topic2schema.filepath--NBy reading the locally provided Avro Schema file, the Avro file content in the Topic is parsed to achieve decoupling from the Schema registration center provided by Confluent.
This configuration needs to be used with the key.converter or value.converter prefix. For example, the local Avro Schema file for configuring avro-user and avro-product Topic is as follows: "value.converter.avro.topic2schema. filepath":"avro-user:file:///opt/avro_user.avsc, avro-product:file:///opt/avro_product.avsc"
For specific usage, please refer to: #32
record.tablename.field--NConfigure this parameter, data from one kafka topic can flow to multiple doris tables. For configuration details, refer to: #58

For other Kafka Connect Sink common configuration items, please refer to: connect_configuring

Type mapping​

Doris-kafka-connector uses logical or primitive type mapping to resolve the column's data type.
Primitive types refer to simple data types represented using Kafka connect's Schema. Logical data types usually use the Struct structure to represent complex types, or date and time types.

Kafka Primitive TypeDoris Type
INT8TINYINT
INT16SMALLINT
INT32INT
INT64BIGINT
FLOAT32FLOAT
FLOAT64DOUBLE
BOOLEANBOOLEAN
STRINGSTRING
BYTESSTRING
Kafka Logical TypeDoris Type
org.apache.kafka.connect.data.DecimalDECIMAL
org.apache.kafka.connect.data.DateDATE
org.apache.kafka.connect.data.TimeSTRING
org.apache.kafka.connect.data.TimestampDATETIME
Debezium Logical TypeDoris Type
io.debezium.time.DateDATE
io.debezium.time.TimeString
io.debezium.time.MicroTimeDATETIME
io.debezium.time.NanoTimeDATETIME
io.debezium.time.ZonedTimeDATETIME
io.debezium.time.TimestampDATETIME
io.debezium.time.MicroTimestampDATETIME
io.debezium.time.NanoTimestampDATETIME
io.debezium.time.ZonedTimestampDATETIME
io.debezium.data.VariableScaleDecimalDOUBLE

Best Practices​

Load plain JSON data​

  1. Import data sample
    In Kafka, there is the following sample data

    kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test-data-topic --from-beginning
    {"user_id":1,"name":"Emily","age":25}
    {"user_id":2,"name":"Benjamin","age":35}
    {"user_id":3,"name":"Olivia","age":28}
    {"user_id":4,"name":"Alexander","age":60}
    {"user_id":5,"name":"Ava","age":17}
    {"user_id":6,"name":"William","age":69}
    {"user_id":7,"name":"Sophia","age":32}
    {"user_id":8,"name":"James","age":64}
    {"user_id":9,"name":"Emma","age":37}
    {"user_id":10,"name":"Liam","age":64}
  2. Create the table that needs to be imported
    In Doris, create the imported table, the specific syntax is as follows

    CREATE TABLE test_db.test_kafka_connector_tbl(
    user_id BIGINT NOT NULL COMMENT "user id",
    name VARCHAR(20) COMMENT "name",
    age INT COMMENT "age"
    )
    DUPLICATE KEY(user_id)
    DISTRIBUTED BY HASH(user_id) BUCKETS 12;
  3. Create an import task
    On the machine where Kafka-connect is deployed, submit the following import task through the curl command

    curl -i http://127.0.0.1:8083/connectors -H "Content-Type: application/json" -X POST -d '{
    "name":"test-doris-sink-cluster",
    "config":{
    "connector.class":"org.apache.doris.kafka.connector.DorisSinkConnector",
    "tasks.max":"10",
    "topics":"test-data-topic",
    "doris.topic2table.map": "test-data-topic:test_kafka_connector_tbl",
    "buffer.count.records":"10000",
    "buffer.flush.time":"120",
    "buffer.size.bytes":"5000000",
    "doris.urls":"10.10.10.1",
    "doris.user":"root",
    "doris.password":"",
    "doris.http.port":"8030",
    "doris.query.port":"9030",
    "doris.database":"test_db",
    "key.converter":"org.apache.kafka.connect.storage.StringConverter",
    "value.converter":"org.apache.kafka.connect.storage.StringConverter"
    }
    }'

Load data collected by Debezium components​

  1. The MySQL database has the following table
   CREATE TABLE test.test_user (
user_id int NOT NULL ,
name varchar(20),
age int,
PRIMARY KEY (user_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

insert into test.test_user values(1,'zhangsan',20);
insert into test.test_user values(2,'lisi',21);
insert into test.test_user values(3,'wangwu',22);
  1. Create the imported table in Doris
   CREATE TABLE test_db.test_user(
user_id BIGINT NOT NULL COMMENT "user id",
name VARCHAR(20) COMMENT "name",
age INT COMMENT "age"
)
UNIQUE KEY(user_id)
DISTRIBUTED BY HASH(user_id) BUCKETS 12;
  1. Deploy the Debezium connector for MySQL component, refer to: Debezium connector for MySQL
  2. Create doris-kafka-connector import task
    Assume that the MySQL table data collected through Debezium is in the mysql_debezium.test.test_user Topic
   curl -i http://127.0.0.1:8083/connectors -H "Content-Type: application/json" -X POST -d '{
"name":"test-debezium-doris-sink",
"config":{
"connector.class":"org.apache.doris.kafka.connector.DorisSinkConnector",
"tasks.max":"10",
"topics":"mysql_debezium.test.test_user",
"doris.topic2table.map": "mysql_debezium.test.test_user:test_user",
"buffer.count.records":"10000",
"buffer.flush.time":"120",
"buffer.size.bytes":"5000000",
"doris.urls":"10.10.10.1",
"doris.user":"root",
"doris.password":"",
"doris.http.port":"8030",
"doris.query.port":"9030",
"doris.database":"test_db",
"converter.mode":"debezium_ingestion",
"enable.delete":"true",
"key.converter":"org.apache.kafka.connect.json.JsonConverter",
"value.converter":"org.apache.kafka.connect.json.JsonConverter"
}
}'

Load Avro serialized data​

curl -i http://127.0.0.1:8083/connectors -H "Content-Type: application/json" -X POST -d '{ 
"name":"doris-avro-test",
"config":{
"connector.class":"org.apache.doris.kafka.connector.DorisSinkConnector",
"topics":"avro_topic",
"tasks.max":"10",
"doris.topic2table.map": "avro_topic:avro_tab",
"buffer.count.records":"100000",
"buffer.flush.time":"120",
"buffer.size.bytes":"10000000",
"doris.urls":"127.0.0.1",
"doris.user":"root",
"doris.password":"",
"doris.http.port":"8030",
"doris.query.port":"9030",
"doris.database":"test",
"load.model":"stream_load",
"key.converter":"io.confluent.connect.avro.AvroConverter",
"key.converter.schema.registry.url":"http://127.0.0.1:8081",
"value.converter":"io.confluent.connect.avro.AvroConverter",
"value.converter.schema.registry.url":"http://127.0.0.1:8081"
}
}'

Load Protobuf serialized data​

curl -i http://127.0.0.1:8083/connectors -H "Content-Type: application/json" -X POST -d '{ 
"name":"doris-protobuf-test",
"config":{
"connector.class":"org.apache.doris.kafka.connector.DorisSinkConnector",
"topics":"proto_topic",
"tasks.max":"10",
"doris.topic2table.map": "proto_topic:proto_tab",
"buffer.count.records":"100000",
"buffer.flush.time":"120",
"buffer.size.bytes":"10000000",
"doris.urls":"127.0.0.1",
"doris.user":"root",
"doris.password":"",
"doris.http.port":"8030",
"doris.query.port":"9030",
"doris.database":"test",
"load.model":"stream_load",
"key.converter":"io.confluent.connect.protobuf.ProtobufConverter",
"key.converter.schema.registry.url":"http://127.0.0.1:8081",
"value.converter":"io.confluent.connect.protobuf.ProtobufConverter",
"value.converter.schema.registry.url":"http://127.0.0.1:8081"
}
}'

FAQ​

1. The following error occurs when reading Json type data:

Caused by: org.apache.kafka.connect.errors.DataException: JsonConverter with schemas.enable requires "schema" and "payload" fields and may not contain additional fields. If you are trying to deserialize plain JSON data, set schemas.enable=false in your converter configuration.
at org.apache.kafka.connect.json.JsonConverter.toConnectData(JsonConverter.java:337)
at org.apache.kafka.connect.storage.Converter.toConnectData(Converter.java:91)
at org.apache.kafka.connect.runtime.WorkerSinkTask.lambda$convertAndTransformRecord$4(WorkerSinkTask.java:536)
at org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execAndRetry(RetryWithToleranceOperator.java:180)
at org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execAndHandleError(RetryWithToleranceOperator.java:214)

reason: This is because using the org.apache.kafka.connect.json.JsonConverter converter requires matching the "schema" and "payload" fields.

Two solutions, choose one:

  1. Replace org.apache.kafka.connect.json.JsonConverter with org.apache.kafka.connect.storage.StringConverter
  2. If the startup mode is Standalone mode, change value.converter.schemas.enable or key.converter.schemas.enable in config/connect-standalone.properties to false; If the startup mode is Distributed mode, change value.converter.schemas.enable or key.converter.schemas.enable in config/connect-distributed.properties to false

2. The consumption times out and the consumer is kicked out of the consumption group:

org.apache.kafka.clients.consumer.CommitFailedException: Offset commit cannot be completed since the consumer is not part of an active group for auto partition assignment; it is likely that the consumer was kicked out of the group.
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.sendOffsetCommitRequest(ConsumerCoordinator.java:1318)
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.doCommitOffsetsAsync(ConsumerCoordinator.java:1127)
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.commitOffsetsAsync(ConsumerCoordinator.java:1093)
at org.apache.kafka.clients.consumer.KafkaConsumer.commitAsync(KafkaConsumer.java:1590)
at org.apache.kafka.connect.runtime.WorkerSinkTask.doCommitAsync(WorkerSinkTask.java:361)
at org.apache.kafka.connect.runtime.WorkerSinkTask.doCommit(WorkerSinkTask.java:376)
at org.apache.kafka.connect.runtime.WorkerSinkTask.commitOffsets(WorkerSinkTask.java:467)
at org.apache.kafka.connect.runtime.WorkerSinkTask.commitOffsets(WorkerSinkTask.java:381)
at org.apache.kafka.connect.runtime.WorkerSinkTask.iteration(WorkerSinkTask.java:221)
at org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:206)
at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:204)
at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:259)
at org.apache.kafka.connect.runtime.isolation.Plugins.lambda$withClassLoader$1(Plugins.java:181)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)
at java.base/java.lang.Thread.run(Thread.java:833)

Solution:

Increase max.poll.interval.ms in Kafka according to the scenario. The default value is 300000

  • If it is started in Standalone mode, add the max.poll.interval.ms and consumer.max.poll.interval.ms parameters in the configuration file of config/connect-standalone.properties, and configure the parameter values.
  • If it is started in Distributed mode, add the max.poll.interval.ms and consumer.max.poll.interval.ms parameters in the configuration file of config/connect-distributed.properties, and configure the parameter values.

After adjusting the parameters, restart kafka-connect

3. Doris-kafka-connector reports an error when upgrading version from 1.0.0 or 1.1.0 to 24.0.0

org.apache.kafka.common.config.ConfigException: Topic 'connect-status' supplied via the 'status.storage.topic' property is required to have 'cleanup.policy=compact' to guarantee consistency and durability of connector and task statuses, but found the topic currently has 'cleanup.policy=delete'. Continuing would likely result in eventually losing connector and task statuses and problems restarting this Connect cluster in the future. Change the 'status.storage.topic' property in the Connect worker configurations to use a topic with 'cleanup.policy=compact'.
at org.apache.kafka.connect.util.TopicAdmin.verifyTopicCleanupPolicyOnlyCompact(TopicAdmin.java:581)
at org.apache.kafka.connect.storage.KafkaTopicBasedBackingStore.lambda$topicInitializer$0(KafkaTopicBasedBackingStore.java:47)
at org.apache.kafka.connect.util.KafkaBasedLog.start(KafkaBasedLog.java:247)
at org.apache.kafka.connect.util.KafkaBasedLog.start(KafkaBasedLog.java:231)
at org.apache.kafka.connect.storage.KafkaStatusBackingStore.start(KafkaStatusBackingStore.java:228)
at org.apache.kafka.connect.runtime.AbstractHerder.startServices(AbstractHerder.java:164)
at org.apache.kafka.connect.runtime.distributed.DistributedHerder.run

Solution: Adjust the clearing strategy of connect-configs connect-status Topic to compact

$KAFKA_HOME/bin/kafka-configs.sh --alter --entity-type topics --entity-name connect-configs --add-config cleanup.policy=compact --bootstrap-server 127.0.0.1:9092
$KAFKA_HOME/bin/kafka-configs.sh --alter --entity-type topics --entity-name connect-status --add-config cleanup.policy=compact --bootstrap-server 127.0.0.1:9092

4. Table schema change failed in debezium_ingestion converter mode

[2025-01-07 14:26:20,474] WARN [doris-normal_test_sink-connector|task-0] Table 'test_sink' cannot be altered because schema evolution is disabled. (org.apache.doris.kafka.connector.converter.RecordService:183)
[2025-01-07 14:26:20,475] ERROR [doris-normal_test_sink-connector|task-0] WorkerSinkTask{id=doris-normal_test_sink-connector-0} Task threw an uncaught and unrecoverable exception. Task is being killed and will not recover until manually restarted. Error: Cannot alter table org.apache.doris.kafka.connector.model.TableDescriptor@67cd8027 because schema evolution is disabled (org.apache.kafka.connect.runtime.WorkerSinkTask:612)
org.apache.doris.kafka.connector.exception.SchemaChangeException: Cannot alter table org.apache.doris.kafka.connector.model.TableDescriptor@67cd8027 because schema evolution is disabled
at org.apache.doris.kafka.connector.converter.RecordService.alterTableIfNeeded(RecordService.java:186)
at org.apache.doris.kafka.connector.converter.RecordService.checkAndApplyTableChangesIfNeeded(RecordService.java:150)
at org.apache.doris.kafka.connector.converter.RecordService.processStructRecord(RecordService.java:100)
at org.apache.doris.kafka.connector.converter.RecordService.getProcessedRecord(RecordService.java:305)
at org.apache.doris.kafka.connector.writer.DorisWriter.putBuffer(DorisWriter.java:155)
at org.apache.doris.kafka.connector.writer.DorisWriter.insertRecord(DorisWriter.java:124)
at org.apache.doris.kafka.connector.writer.StreamLoadWriter.insert(StreamLoadWriter.java:151)
at org.apache.doris.kafka.connector.service.DorisDefaultSinkService.insert(DorisDefaultSinkService.java:154)
at org.apache.doris.kafka.connector.service.DorisDefaultSinkService.insert(DorisDefaultSinkService.java:135)
at org.apache.doris.kafka.connector.DorisSinkTask.put(DorisSinkTask.java:97)
at org.apache.kafka.connect.runtime.WorkerSinkTask.deliverMessages(WorkerSinkTask.java:583)
at org.apache.kafka.connect.runtime.WorkerSinkTask.poll(WorkerSinkTask.java:336)
at org.apache.kafka.connect.runtime.WorkerSinkTask.iteration(WorkerSinkTask.java:237)
at org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:206)
at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:202)
at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:257)
at org.apache.kafka.connect.runtime.isolation.Plugins.lambda$withClassLoader$1(Plugins.java:177)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:829)

Solution:

In debezium_ingestion converter mode, table schema changes are turned off by default. You need to configure debezium.schema.evolution to basic to enable table schema changes.
It should be noted that enabling table structure changes does not accurately keep this changed column as the only column in the Doris table (see debezium.schema.evolution parameter description for details). If you need to keep only unique columns in the upstream and downstream, it is best to manually add the changed columns to the Doris table, and then restart the Connector task. The Connector will continue to consume the unconsumed offset to maintain data consistency.