BloomFilter索引
BloomFilter索引
BloomFilter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合,BloomFilter有以下特点:
- 空间效率高的概率型数据结构,用来检查一个元素是否在一个集合中。
- 对于一个元素检测是否存在的调用,BloomFilter会告诉调用者两个结果之一:可能存在或者一定不存在。
- 缺点是存在误判,告诉你可能存在,不一定真实存在。
布隆过滤器实际上是由一个超长的二进制位数组和一系列的哈希函数组成。二进制位数组初始全部为0,当给定一个待查询的元素时,这个元素会被一系列哈希函数计算映射出一系列的值,所有的值在位数组的偏移量处置为1。
下图所示出一个 m=18, k=3 (m是该Bit数组的大小,k是Hash函数的个数)的Bloom Filter示例。集合中的 x、y、z 三个元素通过 3 个不同的哈希函数散列到位数组中。当查询元素w时,通过Hash函数计算之后因为有一个比特为0,因此w不在该集合中。
那么怎么判断某个元素是否在集合中呢?同样是这个元素经过哈希函数计算后得到所有的偏移位置,若这些位置全都为1,则判断这个元素在这个集合中,若有一个不为1,则判断这个元素不在这个集合中。就是这么简单!
Doris BloomFilter索引及使用使用场景
举个例子:如果要查找一个占用100字节存储空间大小的短行,一个64KB的HFile数据块应该包含(64 * 1024)/100 = 655.53 = ~700行,如果仅能在整个数据块的起始行键上建立索引,那么它是无法给你提供细粒度的索引信息的。因为要查找的行数据可能会落在该数据块的行区间上,也可能行数据没在该数据块上,也可能是表中根本就不存在该行数据,也或者是行数据在另一个HFile里,甚至在MemStore里。以上这几种情况,都会导致从磁盘读取数据块时带来额外的IO开销,也会滥用数据块的缓存,当面对一个巨大的数据集且处于高并发读时,会严重影响性能。
因此,HBase提供了布隆过滤器,它允许你对存储在每个数据块的数据做一个反向测试。当某行被请求时,通过布隆过滤器先检查该行是否不在这个数据块,布隆过滤器要么确定回答该行不在,要么回答它不知道。这就是为什么我们称它是反向测试。布隆过滤器同样也可以应用到行里的单元上,当访问某列标识符时可以先使用同样的反向测试。
但布隆过滤器也不是没有代价。存储这个额外的索引层次会占用额外的空间。布隆过滤器随着它们的索引对象数据增长而增长,所以行级布隆过滤器比列标识符级布隆过滤器占用空间要少。当空间不是问题时,它们可以帮助你榨干系统的性能潜力。 Doris的BloomFilter索引可以通过建表的时候指定,或者通过表的ALTER操作来完成。Bloom Filter本质上是一种位图结构,用于快速的判断一个给定的值是否在一个集合中。这种判断会产生小概率的误判。即如果返回false,则一定不在这个集合内。而如果范围true,则有可能在这个集合内。
BloomFilter索引也是以Block为粒度创建的。每个Block中,指定列的值作为一个集合生成一个BloomFilter索引条目,用于在查询是快速过滤不满足条件的数据。
下面我们通过实例来看看Doris怎么创建BloomFilter索引。
创建BloomFilter索引
Doris BloomFilter索引的创建是通过在建表语句的PROPERTIES里加上"bloom_filter_columns"="k1,k2,k3",这个属性,k1,k2,k3是你要创建的BloomFilter索引的Key列名称,例如下面我们对表里的saler_id,category_id创建了BloomFilter索引。
CREATE TABLE IF NOT EXISTS sale_detail_bloom (
sale_date date NOT NULL COMMENT "销售时间",
customer_id int NOT NULL COMMENT "客户编号",
saler_id int NOT NULL COMMENT "销售员",
sku_id int NOT NULL COMMENT "商品编号",
category_id int NOT NULL COMMENT "商品分类",
sale_count int NOT NULL COMMENT "销售数量",
sale_price DECIMAL(12,2) NOT NULL COMMENT "单价",
sale_amt DECIMAL(20,2) COMMENT "销售总金额"
)
Duplicate KEY(sale_date, customer_id,saler_id,sku_id,category_id)
PARTITION BY RANGE(sale_date)
(
PARTITION P_202111 VALUES [('2021-11-01'), ('2021-12-01'))
)
DISTRIBUTED BY HASH(saler_id) BUCKETS 10
PROPERTIES (
"replication_num" = "3",
"bloom_filter_columns"="saler_id,category_id",
"dynamic_partition.enable" = "true",
"dynamic_partition.time_unit" = "MONTH",
"dynamic_partition.time_zone" = "Asia/Shanghai",
"dynamic_partition.start" = "-2147483648",
"dynamic_partition.end" = "2",
"dynamic_partition.prefix" = "P_",
"dynamic_partition.replication_num" = "3",
"dynamic_partition.buckets" = "3"
);
查看BloomFilter索引
查看我们在表上建立的BloomFilter索引是使用:
SHOW CREATE TABLE <table_name>;
删除BloomFilter索引
删除索引即为将索引列从bloom_filter_columns属性中移除:
ALTER TABLE <db.table_name> SET ("bloom_filter_columns" = "");
修改BloomFilter索引
修改索引即为修改表的bloom_filter_columns属性:
ALTER TABLE <db.table_name> SET ("bloom_filter_columns" = "k1,k3");
Doris BloomFilter使用场景
满足以下几个条件时可以考虑对某列建立Bloom Filter 索引:
- 首先BloomFilter适用于非前缀过滤。
- 查询会根据该列高频过滤,而且查询条件大多是 in 和 = 过滤。
- 不同于Bitmap, BloomFilter适用于高基数列。比如UserID。因为如果创建在低基数的列上,比如 “性别” 列,则每个Block几乎都会包含所有取值,导致BloomFilter索引失去意义。
Doris BloomFilter使用注意事项
- 不支持对Tinyint、Float、Double 类型的列建Bloom Filter索引。
- Bloom Filter索引只对 in 和 = 过滤查询有加速效果。
- 如果要查看某个查询是否命中了Bloom Filter索引,可以通过查询的Profile信息查看。