跳到主要内容

VARIANT

VARIANT

Description

在 Doris 2.1 中引入一种新的数据类型 VARIANT,它可以存储半结构化 JSON 数据。它允许存储包含不同数据类型(如整数、字符串、布尔值等)的复杂数据结构,而无需在表结构中提前定义具体的列。VARIANT 类型特别适用于处理复杂的嵌套结构,而这些结构可能随时会发生变化。在写入过程中,该类型可以自动根据列的结构、类型推断列信息,动态合并写入的 schema,并通过将 JSON 键及其对应的值存储为列和动态子列。

Note

相比 JSON 类型有以下优势:

  1. 存储方式不同,JSON 类型是以二进制 JSONB 格式进行存储,整行 JSON 以行存的形式存储到 segment 文件中。而 VARIANT 类型在写入的时候进行类型推断,将写入的 JSON 列存化。比 JSON 类型有更高的压缩比,存储空间更小。
  2. 查询方式不同,查询不需要进行解析。VARIANT 充分利用 Doris 中列式存储、向量化引擎、优化器等组件给用户带来极高的查询性能。 下面是基于 clickbench 数据测试的结果:
存储空间
预定义静态列12.618 GB
VARIANT 类型12.718 GB
JSON 类型35.711 GB

节省约 65% 存储容量

查询次数预定义静态列VARIANT 类型JSON 类型
第一次查询 (cold)233.79s248.66s大部分查询超时
第二次查询 (hot)86.02s94.82s789.24s
第三次查询 (hot)83.03s92.29s743.69s

测试集 一共 43 个查询语句

查询提速 8+ 倍,查询性能与静态列相当

Example

用一个从建表、导数据、查询全周期的例子说明 VARIANT 的功能和用法。

建表语法

建表语法关键字 VARIANT

-- 无索引
CREATE TABLE IF NOT EXISTS ${table_name} (
k BIGINT,
v VARIANT
)
table_properties;

-- 在v列创建索引,可选指定分词方式,默认不分词
CREATE TABLE IF NOT EXISTS ${table_name} (
k BIGINT,
v VARIANT,
INDEX idx_var(v) USING INVERTED [PROPERTIES("parser" = "english|unicode|chinese")] [COMMENT 'your comment']
)
table_properties;

-- 在v列创建bloom filter
CREATE TABLE IF NOT EXISTS ${table_name} (
k BIGINT,
v VARIANT
)
...
properties("replication_num" = "1", "bloom_filter_columns" = "v");

查询语法

-- 使用 v['a']['b'] 形式如下,v['properties']['title']类型是VARIANT
SELECT v['properties']['title'] from ${table_name}

基于 github events 数据集示例

这里用 github events 数据展示 VARIANT 的建表、导入、查询。 下面是格式化后的一行数据

{
"id": "14186154924",
"type": "PushEvent",
"actor": {
"id": 282080,
"login": "brianchandotcom",
"display_login": "brianchandotcom",
"gravatar_id": "",
"url": "https://api.github.com/users/brianchandotcom",
"avatar_url": "https://avatars.githubusercontent.com/u/282080?"
},
"repo": {
"id": 1920851,
"name": "brianchandotcom/liferay-portal",
"url": "https://api.github.com/repos/brianchandotcom/liferay-portal"
},
"payload": {
"push_id": 6027092734,
"size": 4,
"distinct_size": 4,
"ref": "refs/heads/master",
"head": "91edd3c8c98c214155191feb852831ec535580ba",
"before": "abb58cc0db673a0bd5190000d2ff9c53bb51d04d",
"commits": [""]
},
"public": true,
"created_at": "2020-11-13T18:00:00Z"
}

建表

  • 创建了三个 VARIANT 类型的列, actorrepopayload
  • 创建表的同时创建了 payload 列的倒排索引 idx_payload
  • USING INVERTED 指定索引类型是倒排索引,用于加速子列的条件过滤
  • PROPERTIES("parser" = "english") 指定采用 english 分词
CREATE DATABASE test_variant;
USE test_variant;
CREATE TABLE IF NOT EXISTS github_events (
id BIGINT NOT NULL,
type VARCHAR(30) NULL,
actor VARIANT NULL,
repo VARIANT NULL,
payload VARIANT NULL,
public BOOLEAN NULL,
created_at DATETIME NULL,
INDEX idx_payload (`payload`) USING INVERTED PROPERTIES("parser" = "english") COMMENT 'inverted index for payload'
)
DUPLICATE KEY(`id`)
DISTRIBUTED BY HASH(id) BUCKETS 10
properties("replication_num" = "1");

需要注意的是:

提示
  1. 在 VARIANT 列上创建索引,比如 payload 的子列很多时,可能会造成索引列过多,影响写入性能
  2. 同一个 VARIANT 列的分词属性是相同的,如果您有不同的分词需求,那么可以创建多个 VARIANT 然后分别指定索引属性

使用 streamload 导入

导入 gh_2022-11-07-3.json,这是 github events 一个小时的数据

wget https://qa-build.oss-cn-beijing.aliyuncs.com/regression/variant/gh_2022-11-07-3.json

curl --location-trusted -u root: -T gh_2022-11-07-3.json -H "read_json_by_line:true" -H "format:json" http://127.0.0.1:18148/api/test_variant/github_events/_strea
m_load

{
"TxnId": 2,
"Label": "086fd46a-20e6-4487-becc-9b6ca80281bf",
"Comment": "",
"TwoPhaseCommit": "false",
"Status": "Success",
"Message": "OK",
"NumberTotalRows": 139325,
"NumberLoadedRows": 139325,
"NumberFilteredRows": 0,
"NumberUnselectedRows": 0,
"LoadBytes": 633782875,
"LoadTimeMs": 7870,
"BeginTxnTimeMs": 19,
"StreamLoadPutTimeMs": 162,
"ReadDataTimeMs": 2416,
"WriteDataTimeMs": 7634,
"CommitAndPublishTimeMs": 55
}

确认导入成功

-- 查看行数
mysql> select count() from github_events;
+----------+
| count(*) |
+----------+
| 139325 |
+----------+
1 row in set (0.25 sec)

-- 随机看一条数据
mysql> select * from github_events limit 1;
+-------------+-----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+---------------------+
| id | type | actor | repo | payload | public | created_at |
+-------------+-----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+---------------------+
| 25061821748 | PushEvent | {"gravatar_id":"","display_login":"jfrog-pipelie-intg","url":"https://api.github.com/users/jfrog-pipelie-intg","id":98024358,"login":"jfrog-pipelie-intg","avatar_url":"https://avatars.githubusercontent.com/u/98024358?"} | {"url":"https://api.github.com/repos/jfrog-pipelie-intg/jfinte2e_1667789956723_16","id":562683829,"name":"jfrog-pipelie-intg/jfinte2e_1667789956723_16"} | {"commits":[{"sha":"334433de436baa198024ef9f55f0647721bcd750","author":{"email":"98024358+jfrog-pipelie-intg@users.noreply.github.com","name":"jfrog-pipelie-intg"},"message":"commit message 10238493157623136117","distinct":true,"url":"https://api.github.com/repos/jfrog-pipelie-intg/jfinte2e_1667789956723_16/commits/334433de436baa198024ef9f55f0647721bcd750"}],"before":"f84a26792f44d54305ddd41b7e3a79d25b1a9568","head":"334433de436baa198024ef9f55f0647721bcd750","size":1,"push_id":11572649828,"ref":"refs/heads/test-notification-sent-branch-10238493157623136113","distinct_size":1} | 1 | 2022-11-07 11:00:00 |
+-------------+-----------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+---------------------+
1 row in set (0.23 sec)

desc 查看 schema 信息,子列会在存储层自动扩展、并进行类型推导

mysql> desc github_events;
+------------------------------------------------------------+------------+------+-------+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------------------------------------------------+------------+------+-------+---------+-------+
| id | BIGINT | No | true | NULL | |
| type | VARCHAR(*) | Yes | false | NULL | NONE |
| actor | VARIANT | Yes | false | NULL | NONE |
| created_at | DATETIME | Yes | false | NULL | NONE |
| payload | VARIANT | Yes | false | NULL | NONE |
| public | BOOLEAN | Yes | false | NULL | NONE |
+------------------------------------------------------------+------------+------+-------+---------+-------+
6 rows in set (0.07 sec)

mysql> set describe_extend_variant_column = true;
Query OK, 0 rows affected (0.01 sec)

mysql> desc github_events;
+------------------------------------------------------------+------------+------+-------+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------------------------------------------------+------------+------+-------+---------+-------+
| id | BIGINT | No | true | NULL | |
| type | VARCHAR(*) | Yes | false | NULL | NONE |
| actor | VARIANT | Yes | false | NULL | NONE |
| actor.avatar_url | TEXT | Yes | false | NULL | NONE |
| actor.display_login | TEXT | Yes | false | NULL | NONE |
| actor.id | INT | Yes | false | NULL | NONE |
| actor.login | TEXT | Yes | false | NULL | NONE |
| actor.url | TEXT | Yes | false | NULL | NONE |
| created_at | DATETIME | Yes | false | NULL | NONE |
| payload | VARIANT | Yes | false | NULL | NONE |
| payload.action | TEXT | Yes | false | NULL | NONE |
| payload.before | TEXT | Yes | false | NULL | NONE |
| payload.comment.author_association | TEXT | Yes | false | NULL | NONE |
| payload.comment.body | TEXT | Yes | false | NULL | NONE |
....
+------------------------------------------------------------+------------+------+-------+---------+-------+
406 rows in set (0.07 sec)

desc 可以指定 partition 查看某个 partition 的 schema,语法如下

DESCRIBE ${table_name} PARTITION ($partition_name);

查询

提示

注意 如使用过滤和聚合等功能来查询子列,需要对子列进行额外的 cast 操作(因为存储类型不一定是固定的,需要有一个 SQL 统一的类型)。 例如 SELECT * FROM tbl where CAST(var['titile'] as text) MATCH "hello world" 以下简化的示例说明了如何使用 VARIANT 进行查询

下面是典型的三个查询场景:

  1. 从 github_events 表中获取 top 5 star 数的代码库
mysql> SELECT
-> cast(repo['name'] as text) as repo_name, count() AS stars
-> FROM github_events
-> WHERE type = 'WatchEvent'
-> GROUP BY repo_name
-> ORDER BY stars DESC LIMIT 5;
+--------------------------+-------+
| repo_name | stars |
+--------------------------+-------+
| aplus-framework/app | 78 |
| lensterxyz/lenster | 77 |
| aplus-framework/database | 46 |
| stashapp/stash | 42 |
| aplus-framework/image | 34 |
+--------------------------+-------+
5 rows in set (0.03 sec)
  1. 获取评论中包含 doris 的数量
-- implicit cast `payload['comment']['body']` to string type
mysql> SELECT
-> count() FROM github_events
-> WHERE payload['comment']['body'] MATCH 'doris';
+---------+
| count() |
+---------+
| 3 |
+---------+
1 row in set (0.04 sec)
  1. 查询 comments 最多的 issue 号以及对应的库
mysql> SELECT 
-> cast(repo['name'] as string) as repo_name,
-> cast(payload['issue']['number'] as int) as issue_number,
-> count() AS comments,
-> count(
-> distinct cast(actor['login'] as string)
-> ) AS authors
-> FROM github_events
-> WHERE type = 'IssueCommentEvent' AND (cast(payload['action'] as string) = 'created') AND (cast(payload['issue']['number'] as int) > 10)
-> GROUP BY repo_name, issue_number
-> HAVING authors >= 4
-> ORDER BY comments DESC, repo_name
-> LIMIT 50;
+--------------------------------------+--------------+----------+---------+
| repo_name | issue_number | comments | authors |
+--------------------------------------+--------------+----------+---------+
| facebook/react-native | 35228 | 5 | 4 |
| swsnu/swppfall2022-team4 | 27 | 5 | 4 |
| belgattitude/nextjs-monorepo-example | 2865 | 4 | 4 |
+--------------------------------------+--------------+----------+---------+
3 rows in set (0.03 sec)

嵌套数组类型

{
"nested" : [{"field1" : 123, "field11" : "123"}, {"field2" : 456, "field22" : "456"}]
}

在上面的 JSON 中,数组 nested 包含的对象(object)被称为嵌套数组类型。需要注意的是,目前仅支持一层数组的展开。以下是一个示例:

-- 注意:设置 variant_enable_flatten_nested 为 true
-- 这样可以展开嵌套数组,将数组中的元素以列式存储
-- 如果设置为 false,嵌套数组会存储为 JSON 类型
CREATE TABLE `simple_nested_test` (
`k` bigint NULL,
`v` variant NULL
) ENGINE=OLAP
DUPLICATE KEY(`k`)
DISTRIBUTED BY HASH(`k`) BUCKETS 8
PROPERTIES (
"file_cache_ttl_seconds" = "0",
"is_being_synced" = "false",
"storage_medium" = "hdd",
"storage_format" = "V2",
"inverted_index_storage_format" = "V2",
"light_schema_change" = "true",
"disable_auto_compaction" = "false",
"variant_enable_flatten_nested" = "true",
"enable_single_replica_compaction" = "false",
"group_commit_interval_ms" = "10000",
"group_commit_data_bytes" = "134217728"
);

insert into simple_nested_test values(1, '{
"eventId": 1,
"firstName": "Name1",
"lastName": "Eric",
"body": {
"phoneNumbers": [
{
"number": "1111111111",
"type": "GSM",
"callLimit": 5
},
{
"number": "222222222",
"type": "HOME",
"callLimit": 3
},
{
"number": "33333333",
"callLimit": 2,
"type": "WORK"
}
]
}
}');

-- 设置为展示扩展列的描述信息
set describe_extend_variant_column = true;

-- 使用 DESC 命令将展示如下的扩展列,v.body.phoneNumbers.callLimit, v.body.phoneNumbers.number, v.body.phoneNumbers.type
-- 是从 v.body.phoneNumbers 中展开的字段
mysql> desc simple_nested_test;
+-------------------------------+----------------+------+-------+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------------------------+----------------+------+-------+---------+-------+
| k | bigint | Yes | true | NULL | |
| v | variant | Yes | false | NULL | NONE |
| v.body.phoneNumbers.callLimit | array<tinyint> | Yes | false | NULL | NONE |
| v.body.phoneNumbers.number | array<text> | Yes | false | NULL | NONE |
| v.body.phoneNumbers.type | array<text> | Yes | false | NULL | NONE |
| v.eventId | tinyint | Yes | false | NULL | NONE |
| v.firstName | text | Yes | false | NULL | NONE |
| v.lastName | text | Yes | false | NULL | NONE |
+-------------------------------+----------------+------+-------+---------+-------+
8 rows in set (0.00 sec)

-- 使用 lateral view (explode_variant_array) 来展开数组,并查询符合条件的电话号码及事件 ID
mysql> select v['eventId'], phone_numbers
from simple_nested_test lateral view explode_variant_array(v['body']['phoneNumbers']) tmp1 as phone_numbers
where phone_numbers['type'] = 'GSM' OR phone_numbers['type'] = 'HOME' and phone_numbers['callLimit'] > 2;
+--------------------------+----------------------------------------------------+
| element_at(v, 'eventId') | phone_numbers |
+--------------------------+----------------------------------------------------+
| 1 | {"callLimit":5,"number":"1111111111","type":"GSM"} |
| 1 | {"callLimit":3,"number":"222222222","type":"HOME"} |
+--------------------------+----------------------------------------------------+
2 rows in set (0.02 sec)

使用限制和最佳实践

VARIANT 类型的使用有以下限制: VARIANT 动态列与预定义静态列几乎一样高效。处理诸如日志之类的数据,在这类数据中,经常通过动态属性添加字段(例如 Kubernetes 中的容器标签)。但是解析 JSON 和推断类型会在写入时产生额外开销。因此,我们建议保持单次导入列数在 1000 以下。

尽可能保证类型一致,Doris 会自动进行如下兼容类型转换,当字段无法进行兼容类型转换时会统一转换成 JSONB 类型。JSONB 列的性能与 int、text 等列性能会有所退化。

  1. tinyint->smallint->int->bigint,整形可以按照箭头做类型提升
  2. float->double,浮点数按照箭头做类型提升
  3. text,字符串类型
  4. JSON,二进制 JSON 类型

上诉类型无法兼容时,会变成 JSON 类型防止类型信息丢失,如果您需要在 VARIANT 中设置严格的 schema,即将推出 VARIANT MAPPING 机制

其它限制如下:

  • VARIANT 列只能创建倒排索引或者 bloom filter 来加速过滤
  • 推荐使用 RANDOM 模式和Group Commit 模式,写入性能更高效
  • 日期、decimal 等非标准 JSON 类型会被默认推断成字符串类型,所以尽可能从 VARIANT 中提取出来,用静态类型,性能更好
  • 2 维及其以上的数组列存化会被存成 JSONB 编码,性能不如原生数组
  • 不支持作为主键或者排序键
  • 查询过滤、聚合需要带 cast,存储层会根据存储类型和 cast 目标类型来消除 cast 操作,加速查询。

FAQ

  1. Stream Load 报错: [CANCELLED][INTERNAL_ERROR]tablet error: [DATA_QUALITY_ERROR]Reached max column size limit 2048。 由于 Compaction 和元信息存储限制, VARIANT 类型会限制列数,默认 2048 列,可以适当调整 BE 配置 variant_max_merged_tablet_schema_size , 但是不建议超过 4096

Keywords

VARIANT