Snowflake
在迁移 SnowFlake 的过程中,通常需要借助对象存储作为中间媒介。核心流程如下:首先通过 Snowflake 的 COPY INTO 语句将数据导出到对象存储;再利用 Doris 的 S3 Load 功能从对象存储中读取数据并导入到 Doris 中,具体可参考 S3 导入。
注意事项
在迁移之前,需要根据 SnowFlake 的表结构选择 Doris 的数据模型,以及分区和分桶的策略,更多创建表策略可参考导入最佳实践。
数据类型映射
SnowFlake | Doris | 备注 |
---|---|---|
NUMBER(p, s)/DECIMAL(p, s)/NUMERIC(p,s) | DECIMAL(p, s) | |
INT/INTEGER | INT | |
TINYINT/BYTEINT | TINYINT | |
SMALLINT | SMALLINT | |
BIGINT | BIGINT | |
FLOAT/FLOAT4/FLOAT8/DOUBLE/DOUBLE PRECISION/REAL | DOUBLE | |
VARCHAR/STRING/TEXT | VARCHAR/STRING | VARCHAR 长度最大 65535 |
CHAR/CHARACTER/NCHAR | CHAR | |
BINARY/VARBINARY | STRING | |
BOOLEAN | BOOLEAN | |
DATE | DATE | |
DATETIME/TIMESTAMP/TIMESTAMP_NTZ | DATETIME | TIMESTAMP 是用户可配置的别名,默认为 TIMESTAMP_NTZ |
TIME | STRING | SnowFlake 导出时需要 Cast 成 String 类型 |
VARIANT | VARIANT | |
ARRAY | ARRAY | |
OBJECT | JSON | |
GEOGRAPHY/GEOMETRY | STRING |
1. 创建表
在迁移 SnowFlake 表到 Doris 中的时候,需要先创建 Doris 表。
假设我们在 SnowFlake 中已存在如下表和数据
CREATE OR REPLACE TABLE sales_data (
order_id INT PRIMARY KEY,
customer_name VARCHAR(128),
order_date DATE,
amount DECIMAL(10,2),
country VARCHAR(48)
)
CLUSTER BY (order_date);
INSERT INTO sales_data VALUES
(1, 'Alice', '2025-04-08', 99.99, 'USA'),
(2, 'Bob', '2025-04-08', 149.50, 'Canada'),
(3, 'Charlie', '2025-04-09', 75.00, 'UK'),
(4, 'Diana', '2025-04-10', 200.00, 'Australia');
根据这个表结构,可以创建 Doris 主键分区表,分区字段和 SnowFlake 的 Clustering Key 一致,同时按天分区
CREATE TABLE `sales_data` (
order_id INT,
order_date DATE NOT NULL,
customer_name VARCHAR(128),
amount DECIMAL(10,2),
country VARCHAR(48)
) ENGINE=OLAP
UNIQUE KEY(`order_id`,`order_date`)
PARTITION BY RANGE(`order_date`) ()
DISTRIBUTED BY HASH(`order_id`) BUCKETS 16
PROPERTIES (
"dynamic_partition.enable" = "true",
"dynamic_partition.time_unit" = "DAY",
"dynamic_partition.start" = "-10",
"dynamic_partition.end" = "10",
"dynamic_partition.prefix" = "p",
"dynamic_partition.buckets" = "16",
"replication_num" = "1"
);
2. 导出 SnowFlake 数据
-
通过 COPY INFO 方式导出到 S3 Parquet 格式的文件
SnowFlake 支持导出到 AWS S3,GCS,AZURE,导出时,建议按照Doris 的分区字段进行导出。以下为导出到 AWS S3 的示例:
CREATE FILE FORMAT my_parquet_format TYPE = parquet;
CREATE OR REPLACE STAGE external_stage
URL='s3://mybucket/sales_data'
CREDENTIALS=(AWS_KEY_ID='<ak>' AWS_SECRET_KEY='<sk>')
FILE_FORMAT = my_parquet_format;
COPY INTO @external_stage from sales_data PARTITION BY (CAST(order_date AS VARCHAR)) header=true; -
查看 S3 上的导出文件
导出后,在 S3 上会按照分区划分成具体的子目录,每一个目录是对应的 如下
3. 导入数据到 Doris
导入使用 S3 Load 进行导入,S3 Load 是一种异步的数据导入方式,执行后 Doris 会主动从数据源拉取数据,数据源支持兼容 S3 协议的对象存储,包括 (AWS S3,GCS,AZURE等)。
该方式适用于数据量大、需要后台异步处理的场景。对于需要同步处理的数据导入,可以参考 TVF 导入。
注意:对于含有复杂类型(Struct/Array/Map)的Parquet/ORC格式文件导入,目前必须使用 TVF 导入
-
导入一个分区的数据
LOAD LABEL sales_data_2025_04_08
(
DATA INFILE("s3://mybucket/sales_data/2025_04_08/*")
INTO TABLE sales_data
FORMAT AS "parquet"
(order_id, order_date, customer_name, amount, country)
)
WITH S3
(
"provider" = "S3",
"AWS_ENDPOINT" = "s3.ap-southeast-1.amazonaws.com",
"AWS_ACCESS_KEY" = "<ak>",
"AWS_SECRET_KEY"="<sk>",
"AWS_REGION" = "ap-southeast-1"
); -
通过 Show Load 查看任务运行情况
由于 S3Load 导入是异步提交的,所以需要通过 show load 可以查看指定 label 的导入情况:
mysql> show load where label = "label_sales_data_2025_04_08"\G
*************************** 1. row ***************************
JobId: 17956078
Label: label_sales_data_2025_04_08
State: FINISHED
Progress: 100.00% (1/1)
Type: BROKER
EtlInfo: unselected.rows=0; dpp.abnorm.ALL=0; dpp.norm.ALL=2
TaskInfo: cluster:s3.ap-southeast-1.amazonaws.com; timeout(s):3600; max_filter_ratio:0.0; priority:NORMAL
ErrorMsg: NULL
CreateTime: 2025-04-10 17:50:53
EtlStartTime: 2025-04-10 17:50:54
EtlFinishTime: 2025-04-10 17:50:54
LoadStartTime: 2025-04-10 17:50:54
LoadFinishTime: 2025-04-10 17:50:54
URL: NULL
JobDetails: {"Unfinished backends":{"5eec1be8612d4872-91040ff1e7208a4f":[]},"ScannedRows":2,"TaskNumber":1,"LoadBytes":91,"All backends":{"5eec1be8612d4872-91040ff1e7208a4f":[10022]},"FileNumber":1,"FileSize":1620}
TransactionId: 766228
ErrorTablets: {}
User: root
Comment:
1 row in set (0.00 sec) -
处理导入过程中的错误
当有多个导入任务时,可以通过以下语句,查询数据导入失败的日期和原因。
mysql> show load where state='CANCELLED' and label like "label_test%"\G
*************************** 1. row ***************************
JobId: 18312384
Label: label_test123
State: CANCELLED
Progress: 100.00% (3/3)
Type: BROKER
EtlInfo: unselected.rows=0; dpp.abnorm.ALL=4; dpp.norm.ALL=0
TaskInfo: cluster:s3.ap-southeast-1.amazonaws.com; timeout(s):14400; max_filter_ratio:0.0; priority:NORMAL
ErrorMsg: type:ETL_QUALITY_UNSATISFIED; msg:quality not good enough to cancel
CreateTime: 2025-04-15 17:32:59
EtlStartTime: 2025-04-15 17:33:02
EtlFinishTime: 2025-04-15 17:33:02
LoadStartTime: 2025-04-15 17:33:02
LoadFinishTime: 2025-04-15 17:33:02
URL: http://10.16.10.6:28747/api/_load_error_log?file=__shard_2/error_log_insert_stmt_7602ccd7c3a4854-95307efca7bfe342_7602ccd7c3a4854_95307efca7bfe342
JobDetails: {"Unfinished backends":{"7602ccd7c3a4854-95307efca7bfe341":[]},"ScannedRows":4,"TaskNumber":1,"LoadBytes":188,"All backends":{"7602ccd7c3a4854-95307efca7bfe341":[10022]},"FileNumber":3,"FileSize":4839}
TransactionId: 769213
ErrorTablets: {}
User: root
Comment:如上面的例子是数据质量错误(ETL_QUALITY_UNSATISFIED),具体错误需要通过访问返回的 URL 的链接进行查看,如下是数据超过了表中的 Schema 中 country 列的实际长度:
[root@VM-10-6-centos ~]$ curl "http://10.16.10.6:28747/api/_load_error_log?file=__shard_2/error_log_insert_stmt_7602ccd7c3a4854-95307efca7bfe342_7602ccd7c3a4854_95307efca7bfe342"
Reason: column_name[country], the length of input is too long than schema. first 32 bytes of input str: [USA] schema length: 1; actual length: 3; . src line [];
Reason: column_name[country], the length of input is too long than schema. first 32 bytes of input str: [Canada] schema length: 1; actual length: 6; . src line [];
Reason: column_name[country], the length of input is too long than schema. first 32 bytes of input str: [UK] schema length: 1; actual length: 2; . src line [];
Reason: column_name[country], the length of input is too long than schema. first 32 bytes of input str: [Australia] schema length: 1; actual length: 9; . src line [];同时对于数据质量的错误,如果可以允许错误数据跳过的,可以通过在 S3 Load 任务中 Properties 设置容错率,具体可参考导入配置参数。
-
导入多个分区的数据
当需要迁移大数据量的存量数据时,建议使用分批导入的策略。每批数据对应 Doris 的一个分区或少量几个分区,数据量建议不超过 100GB,以减轻系统压力并降低导入失败后的重试成本。
可参考脚本 s3_load_demo.sh,该脚本可以实现了轮询 S3 上的分区目录,同时提交 S3 Load 任务到 Doris 中,实现批量导入的效果。