跳到主要内容

SQL 方言兼容

提示

从 2.1 版本开始,Doris 可以支持多种 SQL 方言,如 Presto、Trino、Hive、PostgreSQL、Spark、Clickhouse 等等。通过这个功能,用户可以直接使用对应的 SQL 方言查询 Doris 中的数据,方便用户将原先的业务平滑的迁移到 Doris 中。

警告

该功能目前是实验性功能,您在使用过程中如遇到任何问题,欢迎通过邮件组、GitHub Issue 等方式进行反馈。

部署服务

  1. 下载最新版本的 SQL 方言转换工具

    NOTE

    SQL 方言转换工具基于开源的 SQLGlot ,由 SelectDB 进行二次开发,关于 SQLGlot 可参阅 SQLGlot 官网
    SQL Convertor 并非由 Apache Doris 维护或认可,这些工作由 Committers 和 Doris PMC 监督。使用这些资源和服务完全由您自行决定,社区不负责验证这些工具的许可或有效性。

  2. 在任意 FE 节点,通过以下命令启动服务:

    # 配置服务端口
    vim apiserver/conf/config.conf
    # 启动 SQL Converter for Apache Doris 转换服务
    sh apiserver/bin/start.sh
    # 如需前端界面, 可在 webserver 中配置相应的端口并启动, 不需要前端则可以忽略以下操作
    vim webserver/conf/config.conf
    # 启动前端界面
    sh webserver/bin/start.sh
    提示
    1. 该服务是一个无状态的服务, 可随时启停

    2. apiserver/conf/config.conf 中配置 port 来指定任意一个可用端口, 配置 workers 来指定启动的线程数量. 在并发场景中, 可以根据需要调整, 默认为 1

    3. 建议在每个 FE 节点都单独启动一个服务

    4. 如需启动前端界面, 可以在 webserver/conf/config.conf 中配置 SQL Converter for Apache Doris 转换服务地址, 默认是 API_HOST=http://127.0.0.1:5001

  3. 启动 Doris 集群(2.1 或更高版本)

  4. 通过以下命令,在 Doris 中设置 SQL 方言转换服务的 URL:

    MySQL> set global sql_converter_service_url = "http://127.0.0.1:5001/api/v1/convert"

    • 127.0.0.1:5001 是 SQL 方言转换服务的部署节点 ip 和端口。

使用 SQL 方言

目前支持的方言类型包括:

  • presto

  • trino

  • clickhouse

  • hive

  • spark

  • postgres

示例:

Presto

mysql> CREATE TABLE  test_sqlconvert (
id int,
start_time DateTime,
value String,
arr_int ARRAY<Int>,
arr_str ARRAY<String>
) ENGINE=OLAP
DUPLICATE KEY(`id`)
COMMENT 'OLAP'
DISTRIBUTED BY HASH(`id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO test_sqlconvert values(1, '2024-05-20 13:14:52', '2024-01-14',[1, 2, 3, 3], ['Hello', 'World']);
Query OK, 1 row affected (0.08 sec)

mysql> set sql_dialect=presto;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT cast(start_time as varchar(20)) as col1,
array_distinct(arr_int) as col2,
FILTER(arr_str, x -> x LIKE '%World%') as col3,
to_date(value,'%Y-%m-%d') as col4,
YEAR(start_time) as col5,
date_add('month', 1, start_time) as col6,
REGEXP_EXTRACT_ALL(value, '-.') as col7,
JSON_EXTRACT('{"id": "33"}', '$.id')as col8,
element_at(arr_int, 1) as col9,
date_trunc('day',start_time) as col10
FROM test_sqlconvert
where date_trunc('day',start_time)= DATE'2024-05-20'
order by id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | col10 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" | 1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
1 row in set (0.03 sec)

Clickhouse

mysql> set sql_dialect=clickhouse;
Query OK, 0 rows affected (0.00 sec)

mysql> select toString(start_time) as col1,
arrayCompact(arr_int) as col2,
arrayFilter(x -> x like '%World%',arr_str)as col3,
toDate(value) as col4,
toYear(start_time)as col5,
addMonths(start_time, 1)as col6,
extractAll(value, '-.')as col7,
JSONExtractString('{"id": "33"}' , 'id')as col8,
arrayElement(arr_int, 1) as col9,
date_trunc('day',start_time) as col10
FROM test_sqlconvert
where date_trunc('day',start_time)= '2024-05-20 00:00:00'
order by id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | col10 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" | 1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
1 row in set (0.02 sec)