SQL 方言兼容
从 2.1 版本开始,Doris 可以支持多种 SQL 方言,如 Presto、Trino、Hive、PostgreSQL、Spark、Clickhouse 等等。通过这个功能,用户可以直接使用对应的 SQL 方言查询 Doris 中的数据,方便用户将原先的业务平滑的迁移到 Doris 中。
该功能目前是实验性功能,您在使用过程中如遇到任何问题,欢迎通过邮件组、GitHub Issue 等方式进行反馈。
部署服务
-
下载最新版本的 SQL 方言转换工具
NOTESQL 方言转换工具基于开源的 SQLGlot ,由 SelectDB 进行二次开发,关于 SQLGlot 可参阅 SQLGlot 官网。
SQL Convertor 并非由 Apache Doris 维护或认可,这些工作由 Committers 和 Doris PMC 监督。使用这些资源和服务完全由您自行决定,社区不负责验证这些工具的许可或有效性。 -
在任意 FE 节点,通过以下命令启动服务:
# 配置服务端口
vim apiserver/conf/config.conf
# 启动 SQL Converter for Apache Doris 转换服务
sh apiserver/bin/start.sh
# 如需前端界面, 可在 webserver 中配置相应的端口并启动, 不需要前端则可以忽略以下操作
vim webserver/conf/config.conf
# 启动前端界面
sh webserver/bin/start.sh提示-
该服务是一个无状态的服务, 可随时启停
-
在
apiserver/conf/config.conf
中配置 port 来指定任意一个可用端口, 配置 workers 来指定启动的线程数量. 在并发场景中, 可以根据需要调整, 默认为 1 -
建议在每个 FE 节点都单独启动一个服务
-
如需启动前端界面, 可以在
webserver/conf/config.conf
中配置 SQL Converter for Apache Doris 转换服务地址, 默认是API_HOST=http://127.0.0.1:5001
-
-
启动 Doris 集群(2.1 或更高版本)
-
通过以下命令,在 Doris 中设置 SQL 方言转换服务的 URL:
MySQL> set global sql_converter_service_url = "http://127.0.0.1:5001/api/v1/convert"
127.0.0.1:5001
是 SQL 方言转换服务的部署节点 ip 和端口。
使用 SQL 方言
目前支持的方言类型包括:
-
presto
-
trino
-
clickhouse
-
hive
-
spark
-
postgres
示例:
Presto
mysql> CREATE TABLE test_sqlconvert (
id int,
start_time DateTime,
value String,
arr_int ARRAY<Int>,
arr_str ARRAY<String>
) ENGINE=OLAP
DUPLICATE KEY(`id`)
COMMENT 'OLAP'
DISTRIBUTED BY HASH(`id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
);
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO test_sqlconvert values(1, '2024-05-20 13:14:52', '2024-01-14',[1, 2, 3, 3], ['Hello', 'World']);
Query OK, 1 row affected (0.08 sec)
mysql> set sql_dialect=presto;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT cast(start_time as varchar(20)) as col1,
array_distinct(arr_int) as col2,
FILTER(arr_str, x -> x LIKE '%World%') as col3,
to_date(value,'%Y-%m-%d') as col4,
YEAR(start_time) as col5,
date_add('month', 1, start_time) as col6,
REGEXP_EXTRACT_ALL(value, '-.') as col7,
JSON_EXTRACT('{"id": "33"}', '$.id')as col8,
element_at(arr_int, 1) as col9,
date_trunc('day',start_time) as col10
FROM test_sqlconvert
where date_trunc('day',start_time)= DATE'2024-05-20'
order by id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | col10 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" | 1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
1 row in set (0.03 sec)
Clickhouse
mysql> set sql_dialect=clickhouse;
Query OK, 0 rows affected (0.00 sec)
mysql> select toString(start_time) as col1,
arrayCompact(arr_int) as col2,
arrayFilter(x -> x like '%World%',arr_str)as col3,
toDate(value) as col4,
toYear(start_time)as col5,
addMonths(start_time, 1)as col6,
extractAll(value, '-.')as col7,
JSONExtractString('{"id": "33"}' , 'id')as col8,
arrayElement(arr_int, 1) as col9,
date_trunc('day',start_time) as col10
FROM test_sqlconvert
where date_trunc('day',start_time)= '2024-05-20 00:00:00'
order by id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | col10 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" | 1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
1 row in set (0.02 sec)